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ably fast computers available nowadays. This necessitates
the use of efficient algorithms.One of the most intractable problems in electromagnetic multi-

sphere-scattering theory is the formulation and evaluation of vector Rotational addition theorems are well known for scalar
addition coefficients introduced by the addition theorems for vector spherical wave functions [27–30] and well formulated for
spherical harmonics. This paper presents an efficient approach for vector spherical harmonics [25, 26]. Therefore, this paperthe calculation of both scalar and vector translational addition coef-

concentrates on the calculation of the scalar and vectorficients, which is based on fast evaluation of the Gaunt coefficients.
translational addition coefficients. Common to the analyti-The paper also rederives the analytical expressions for the vector

translational addition coefficients and discusses the strengths and cal expressions for these coefficients is a product of two
limitations of other formulations and numerical techniques found associated Legendre functions that in turn may be ex-
in the literature. Numerical results from the formulation derived in pressed in terms of a linearization expansion involving thethis paper agree with those of a previously published recursion

Gaunt coefficients [31]. Considerable research work hasscheme that completely avoids the use of the Gaunt coefficients,
but the method of direct calculation proposed here reduces the been conducted on the calculation of the Gaunt coeffi-
computing time by a factor of 4–6. Q 1996 Academic Press, Inc. cients, including those of Bruning [32], Fuller [33] and Xu

[34]. Stein [25] and, later, Mackowski [21] showed that the
vector translational addition coefficients can be evaluated

I. INTRODUCTION from pertinent scalar addition coefficients. Correct recur-
rence relations for the scalar addition coefficients wereElectromagnetic scattering characteristics of compact
obtained by Mackowski [21] and were consequently usedmultisphere systems are of considerable interest for a wide
to circumvent the use of the Gaunt coefficient in the calcu-range of applications, from modeling the interplanetary
lation of the vector translational addition coefficients atand interstellar dust clouds to enhancing the gain along
the cost of evaluating certain auxiliary quantities. Cruzanpreferred directions of an antenna. Not surprisingly, this
[26] also derived expressions for the vector translationalhas stimulated active research in the theoretical study of
addition coefficients using the Wigner 3jm symbols [35,electromagnetic scattering by arbitrary configurations of
36]. The expressions of Cruzan’s type are more efficientneighboring spheres in the last few decades [1–26]. The
in practical applications. However, Cruzan’s expressionformulation of the interactive scattering by an ensemble
for one of the two classes of vector translational additionof spheres is complicated, both analytically and numeri-
coefficients is incorrect and needs a replacement.cally, as it demands the use of vector addition theorems.

In this paper we have solved most of the problems inThese addition theorems or expansions are necessary to
the formulation and evaluation of the vector translationaldescribe an electromagnetic field using the same set of
addition coefficients for general multisphere scattering cal-basis spherical wave functions, with respect to a reference
culations. Since the Gaunt coefficients are inseparably con-system with an arbitrary origin. Major difficulty encoun-
nected with the translational addition coefficients, thetered in the application of the addition theorems is the
methods for calculating the Gaunt coefficients are ad-evaluation of the addition coefficients. The derivation of
dressed first in Section II. Both our linearization methodthe analytical expressions for the addition coefficients is
and the recurrence formulae developed by Bruning andlengthy and complex and it is difficult to ensure that the
by Fuller are discussed. In Section III, we then proceed tofinal formulae are error-free. Even if the problem is suit-
elucidate the new approach to directly calculating the sca-ably formulated, the computation of the addition coeffi-
lar translational addition coefficients and we also discusscients is annoyingly time-consuming even with the reason-
Mackowski’s recursive approach. Section IV reviews three
sets of expressions for the vector translational addition* Telephone: (352) 392-9519; Fax: (352) 392-5089; E-mail: shu@astro.

ufl.edu. coefficients formulated by Stein, Cruzan, and Mackowski,
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respectively, and it also presents our revised version of a(m, n, e, n, p) 5 (21)m1e (2p 1 1)
Cruzan’s expressions, which enable us to greatly reduce
the CPU time requirement in practical computation. Dis- 3 F(n 1 m)!(n 1 e)!(p 2 m 2 e)!

(n 2 m)!(n 2 e)!(p 1 m 1 e)!G1/2

cussions of the numerical methods are presented in Section
V along with comparisons of the efficiency and accuracy
of the results to those of other methods. Some practical

3Sn n p

0 0 0
DSn n p

m e 2m 2 e
D, (4)

applications of this formulation are given in Section VI.
Finally, Section VII concludes with a brief summary of the
method and closing remarks. where ( j1 j2 j3

m1 m2 m3
) is the Wigner 3jm symbol. This 3jm

formulation may be considered elegant, but it works well
only for low degrees (small values of n and n) [34], whileII. GAUNT COEFFICIENTS
multisphere scattering problems usually involve both low

The Gaunt coefficient is defined by and high degrees. Also, it is too time consuming to be of
practical use in actual multisphere scattering calculations.

Recently, Xu [34] has devised an efficient way to calcu-
a(m, n, e, n, p) 5

(2p 1 1)
2

(p 2 m 2 e)!
(p 1 m 1 e)!

E1

21
late the Gaunt coefficients that works satisfactorily for
both low and high degrees and requires only around 1%

Pm
n (x)Pe

n(x)Pm1e
p (x) dx, (1) of the computing time demanded by the 3jm formulation.

This algorithm defines the ‘‘normalized Gaunt coefficient’’
by ãk 5 ak/a0. By definition, ã0 ; 1. The first Gaunt coeffi-where m, n, e, n, p are integers and n $ 0, n $ 0, p $ 0.
cient a0 is obtained directly fromThis integral of the product of three associated Legendre

functions was first used by Gaunt in 1929 [31] in his study
of the atomic structure of helium triplets. The Gaunt coef- a0 5

(n 1 1)n(n 1 1)n

(n 1 n 1 1)n1n

(n 1 n 2 m 2 e)!
(n 2 m)!(n 2 e)!

. (5)
ficients vanish whenever p 5 n 1 n 2 1, n 1 n 2 3, .... Xu
[34] formulated an alternative equivalent definition,

In general, all other qmax nonzero normalized Gaunt coef-
ficients are given by

Pm
n (x)Pe

n(x) 5 Oqmax

q50
aq Pm1e

n1n22q(x), (2)

ãq 5
(p 1 1/2)2q

(2n4)2q
Oq
k50

(m 2 n)2k(e 2 n)2q22k

k!(q 2 k)!(2n 1 1/2)k(2n 1 1/2)q2k

where aq is an abbreviated notation for the Gaunt coeffi-
cient a(m, n, e, n, n 1 n 2 2q), and 2 Oq21

j50

(2p 2 q 1 j 1 1/2)q2j

(q 2 j)!
ãj , (6)

where p 5 n 1 n 2 2q, n4 5 n 1 n 2 m 2 e, and q 5 1,qmax 5 min Sn, n,
n 1 n 2 um 1 eu

2 D. (3)
2, ..., qmax. From this algorithm, the second normalized
Gaunt coefficient can be expressed in the form

This definition of the Gaunt coefficients is particularly con-
venient for the multisphere scattering problem wherein ã1 5

(2n 1 2n 2 3)
2 H1 2

(2n 1 2n 2 1)
n4(n4 2 1)the Gaunt coefficients are usually computed as a group.

Gaunt coefficients are closely related to the Clebsch–
Gordan coefficients that are extensively used in quantum 3 F(m 2 n)(m 2 n 1 1)

(2n 2 1)
1

(e 2 n)(e 2 n 1 1)
(2n 2 1) GJ (7)

mechanics [37, 38] and usually expressed in terms of the
Wigner 3jm symbols. Cruzan [26] expressed the Gaunt
coefficients (and, therefore, the vector addition coeffi- and others can be expressed in a similar way but with more

complicated forms. The lower triangular system of linearcients) in terms of the Wigner 3jm symbols as well. The
integral over the triple associated Legendre functions and, equations (6) is also easy to solve numerically. All coeffi-

cients and constant terms in the linear equations havethus, the Gaunt coefficient has been evaluated in various
forms. It was presented as complex summations of factori- simple two-term recurrence relations with all starting val-

ues being 1 [34].als by Gaunt and others and was identified as a generalized
hypergeometric series by Hardy [39] and by Rose [40]. It is noteworthy here that Bruning and Lo [8, 32], as

well as Fuller [33], have derived some general three-termWith Cruzan’s representation, the Gaunt coefficient is
given by recurrence relations for the Gaunt coefficients. A recursive
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approach to evaluating these coefficients is highly desirable x1 5 A(n 1 1, p 2 1)B(2n 2 2, p 2 3)B(n, p 2 4),
in practical applications. In 1971, Bruning and Lo [8] pub-

x2 5 [(n 1 1)2 2 e2]A(n 1 1, p 2 1)A(n 1 1, p 2 3)
lished the three-term recurrence formula for the particular

3 A(n 1 2, p 2 2) (13)
Gaunt coefficients with e 5 2m,

1 A(n 1 1, p 2 3)B(n, p 2 2)G(2n 2 2, p 2 1)
1 A(n 1 1, p 2 1)B(2n 2 2, p 2 3)G(n, p 2 2),

ap23ap24 1 (4m2 2 ap22 2 ap21)ap22 1 ap ap 5 0, (8)
x3 5 A(n 1 1, p 2 3)G(2n 2 2, p 2 1)G(n, p),

where ap stands for the Gaunt coefficient a(m, n, 2m, n,
p) and with

A(n, p) 5 p(p 1 1)(m 2 e) 2 (m 1 e)(n 2 n 1 1)(n 1 n),ap 5
[p2 2 (n 1 n 1 1)2][p2 2 (n 2 n)2]

1 2 4p2 . (9)

B(n, p) 5
p 2 m 2 e 1 1

2p 1 1
(n 2 n 2 p 2 1)(n 1 n 1 p 1 2)

Explicit expressions, given by Bruning, for the two starting
values for the implementation of the above recurrence 3 [m(n 1 1) 2 e(p 2 n 1 1)], (14)
formula are essentially the same as Eqs. (5) and (7). Equa-
tion (8) provides very accurate numerical results for all low- G(n, p) 5

p 1 m 1 e
2p 1 1

(n 1 n 2 p 1 1)(n 2 n 1 p)
and high-degree coefficients, but this recurrence formula
applies only to the special case where coordinate transla-

3 [m(n 1 1) 1 e(p 1 n)].
tion is restricted to be along the z-axis. By the use of six
recurrence relations listed by Cruzan [26] involving as

This recursion scheme works well when the degree in-many as six terms or three indices within a single formula,
volved is not too high. As pointed out by Fuller [33], theBruning [32] also obtained the following pair of three-term
practical application of Eq. (12) is, however, complicatedrecurrence formulas in two indices n and p for the case of
by the fact that x1, the coefficient of the p 2 4 term,a general coordinate translation:
vanishes for certain relations between m, n, e, n, and p.
Fuller [33] has investigated all the seven classes of zeros(2p 1 1)(2p 2 3)(n 2 e 1 1)[p(p 2 1)(m 2 e)
of x1. Most of these cases can be handled without difficulty.2 (m 1 e)(n 2 n)(n 1 n 1 1)]
But in some cases, x1 5 0 cannot be simply avoided. For3 a(m, n, e, n 1 1, p 2 1)
certain integer groups (m, n, e, n) with some particular1 (2p 1 1)(p 2 m 2 e 2 1)(p 2 n 1 n 2 1)
values of p, such as (22, 7, 3, 8) or (3, 8, 22, 7) with p 53 (p 1 n 1 n)[e(p 2 n 2 1) 2 m(n 1 1)]
5, B(2n 2 2, p 2 3) 5 0 while transposing the indices (m,3 a(m, n, e, n, p 2 2)
n) with (e, n) results in B(n, p 2 4) 5 0. In these cases1 (2p 2 3)(p 1 m 1 e)(n 1 n 2 p 1 1)
the recurrence relation represented by Eq. (12) is not appli-3 (n 2 n 1 p)[e(p 1 n) 1 m(n 1 1)]
cable and other methods for calculating these particular3 a(m, n, e, n, p) 5 0, (10)
coefficients must be employed. Also, for some groups of

(2p 1 1)(2p 2 3)(n 1 e)[p(p 2 1)(m 2 e) (m, n, e, n) with very high degree n or n, such as (1, 40,
2 (m 1 e)(n 2 n)(n 1 n 1 1)] 45, 46) and (1, 30, 40, 60), Eq. (12) is somehow unable to
3 a(m, n, e, n 2 1, p 2 1) produce accurate numerical results. Further research work
1 (2p 1 1)(p 2 m 2 e 2 1)(n 1 n 2 p 1 2) may erase these imperfections and consummate the ex-
3 (n 2 n 1 p 2 1)[e(p 1 n) 1 mn] isting general recursion scheme.
3 a(m, n, e, n, p 2 2)
1 (2p 2 3)(p 1 m 1 e)(n 1 n 1 p 1 1)

III. SCALAR TRANSLATIONAL ADDITION3 (p 2 n 1 n)[e(p 2 n 2 1) 2 mn]
COEFFICIENTS3 a(m, n, e, n, p) 5 0. (11)

In 1954, Friedman and Russek [24] derived a general
As a further development of Bruning’s results, Fuller [33] translational addition theorem for the spherical scalar wave
derived a single three-term recurrence relation in the index functions. Stein [25] later revised it and extended it to the
p alone: vector case; see also Cruzan [26]. Since the vector addition

theorems are derived from the scalar addition theorems
x1ap24 1 x2ap22 1 x3ap 5 0, (12) and vector addition coefficients can be expressed in terms

of scalar addition coefficients, we treat the calculation of
the scalar addition coefficients first.where ap denotes the Gaunt coefficient a(m, n, e, n, p) and
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A. Scalar Translational Addition Theorem
a(m 2 e, n, e, n, p) ; (21)e 2n 1 1

2p 1 1
a(2m, n, e, n, p),

The potentials or scalar spherical waves are solutions of
the Helmholtz equation in spherical coordinates, (19)

=2u 1 k2u 5 0, (15) Bruning [32] obtained the more symmetric form

where k2 5 g2«e (k is the wave number), g is the circular
Cen

mn 5 (21)m(2n 1 1)in2n O
p

i pa(2m, n, e, n, p)frequency, and «, e are the permeability and the dielectric
constant of the medium, respectively. The set of character-
istic solutions with suppressed time dependence exp(2igt)

3Sz(J)
p (kdlj)

jp(kdlj)
D Pe2m

p (cos ulj) exp[i(e 2 m)flj]is given by

u(J)
mn 5 z(J)

n (kr)Pm
n (cos u) exp(imf), (16) Sr # dlj

r $ dlj
D. (20)

where z(J)
n is appropriately selected among the following

four spherical functions: (a) the Bessel function of the first
With the use of the spherical coordinates of the origin ofkind jn, (b) the Bessel function of the second kind yn, (c)
the lth coordinate system in the jth coordinate system (djl,the Hankel function of the first kind h(1)

n , and (d) the Han-
ujl, fjl) and the relationskel function of the second kind h(2)

n , denoted by J 5 1, 2,
3, or 4, respectively; Pm

n (cos u) is the associated Legendre
function of the first kind and of degree n and order m, n djl 5 dlj, ujl 5 f 2 ulj, fjl 5 f 1 flj, (21)
and m are integers with 0 # n , y and umu # n.

The translation of an elementary spherical wave uen from
Eq. (20) can alternatively be written in the formthe lth coordinate system to the jth coordinate system is

given by [26]
Cen

mn 5 (21)m(2n 1 1)in2n O
p

(2i) pa(2m, n, e, n, p)

u(J)
en (rl, ul, fl) 5 Oy

n51
On

m52n
Cen

mn(dlj, ulj, flj)u(1)
mn(rj, uj, fj),

3Sz(J)
p (kdjl)

jp(kdjl)
D Pe2m

p (cos ujl) exp[i(e 2 m)fjl]
r # dlj,

(17)
u(J)

en (rl, ul, fl) 5 Oy
n51

On
m52n

Cen
mn(dlj, ulj, flj)u(J)

mn(rj, uj, fj), Sr # djl

r $ djl
D. (22)

r $ dlj,
B. Calculation of the Scalar Translational

Addition Coefficientswhere the scalar addition coefficients are given by Stein
[25] as There are two ways to calculate scalar translational addi-

tion coefficients. As shown in the preceding subsection,
C en

mn 5 (21)m(2n 1 1)in2n O
p

i pa(2m, n, e, n, p) these coefficients can be expressed in terms of the Gaunt
coefficients together with the Bessel and the associated
Legendre functions. We do not need to discuss the calcula-3 z(J)

p (kdlj)Pe2m
p (cos ulj) exp[i(e 2 m)flj], r # dlj ,

tion of the Bessel and the associated Legendre functions
C en

mn 5 (21)min2n O
p

i p(2p 1 1)a(m 2 e, n, e, n, p) since standard methods for their evaluation are available.
Thus, by the use of an efficient algorithm for the evaluation

3 jp(kdlj)Pe2m
p (cos ulj) exp[i(e 2 m)flj], r $ dlj . of the Gaunt coefficients (such as the methods described

in Section II), it is feasible in practice to calculate the scalar
(18) translational addition coefficients directly and expedi-

tiously. This shall henceforth be referred to as the method
of direct calculation. An alternative is the recursive ap-Here, (dlj, ulj, flj) are the spherical coordinates of the origin

of the jth coordinate system in the lth coordinate system proach devised by Mackowski. Both of them are dis-
cussed below.and z(J)

p is usually taken as h(1)
p . By using the identity relation
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1. THE METHOD OF DIRECT CALCULATION. Any scalar From Eqs. (3) and (23) it is evident that only one Gaunt
coefficient, namely a0, is involved in this case and thataddition coefficient, Cen

mn, can be computed by the following
two steps: a0 5 ã0 5 1. The value of C00

mn for any (m, n) can thus be
directly calculated from Eq. (27) without carrying out any

(a) All qmax 1 1 nonzero normalized Gaunt coefficients real calculation of the Gaunt coefficient. With these quanti-
ãq 5 ã(2m, n, e, n, n 1 n 2 2q) can be accurately deter- ties as starting values, the three recurrence relations (24)–
mined by using the efficient algorithms described in Section (26) allow one to determine the value of any Cen

mn. The
II. Here, qmax takes the smallest value among n, n, and procedure for calculating a particular value of Cen

mn is as
(n 1 n 2 ue 2 mu)/2. follows.

(b) The value of Cen
mn can then be easily evaluated by

(a) Calculate the n 1 1 starting values of C00
m2en1n22j

( j 5 0, 1, ..., n) by the use of Eq. (27).
Cen

mn 5 (21)m1n(2n 1 1)a0 exp[i(e 2 m)flj] There are, however, only k 1 1 nonzero values, where

3 Oqmax

q50
(21)qãqSz(J)

n1n22q(kdlj)

jn1n22q(kdlj)
D P e2m

n1n22q (cos ulj) k 5 min Sn,
n 1 n 2 um 2 eu

2 D. (28)

For any j . k, C00
m2en1n22j 5 0.Sr # dlj

r $ dlj
D, (23)

(b) Calculate the n 2 ueu 1 1 values of Ceueu
ms , where

s 5 n 1 n 2 ueu 2 2j, j 5 0, 1, ..., n 2 ueu. (29)where a0 5 a(2m, n, e, n, n 1 n) can be directly evaluated
from Eq. (5).

Only l 1 1 of these scalar coefficients have nonzero val-
2. MACKOWSKI’S RECURSION SCHEME. The basic ues and

three recurrence relations for scalar translational addition
coefficients obtained by Mackowski [21] are:

l 5 min Sn 2 ueu, n 1 n 2 ueu 2 umu
2 D. (30)

Cen21
mn 1 Cen11

mn

2n 1 1
5

Ce21n
m21n21

2n 2 1
1

Ce21n
m21n11

2n 1 3
, (24)

The calculation uses one of the two recurrence relations,

(n 1 e)(n 1 e 1 1)Cen21
mn 1 (n 2 e)(n 2 e 1 1)Cen11

mn

2n 1 1 Ct11t11
ws 5 (2t 1 1) SCtt

w21s21

2s 2 1
1

Ctt
w21s11

2s 1 3 D, (31)

5
(n 2 m)(n 2 m 2 1)

2n 2 1
Ce11n

m11n21

C2t21t11
ws 5

1
2(t 1 1) F(s 2 w)(s 2 w 2 1)

2s 2 1
C2tt

w11s21

1
(n 1 m 1 1)(n 1 m 1 3)

2n 1 3
Ce11n

m11n11, (25)

1
(s 1 w 1 1)(s 1 w 1 2)

2s 1 3
C2tt

w11s11G, (32)
(n 1 e)Cen21

mn 2 (n 2 e 1 1)Cen11
mn

2n 1 1
which are Eqs. (24) and (25) in the special case n 5 ueu.
If e is positive, the use of Eq. (31) is required and, other-5 2

n 2 m
2n 2 1

Cen
mn21 1

n 1 m 1 1
2n 1 3

Cen
mn11. (26)

wise, Eq. (32) should be used. First, n values of the next
degree of C11

m2e11n1n2122j (e . 0) or C211
m2e21n1n2122j (e , 0)

There is a special case in which the scalar addition coeffi- ( j 5 0, 1, ..., n 2 1) are calculated from the n 1 1 starting
cients have very simple forms and the calculation of the values obtained in the previous step (a) by using the appro-
Gaunt coefficient is not actually involved. When e 5 n 5 0, priate recurrence relation (31) or (32). The same process

is then repeated ueu times until the required n 2 ueu 1 1
values of Ceueu

ms are obtained. Each time, the number of
scalar addition coefficients calculated is decreased by one,C00

mn 5 (21)m1n(2n 1 1)Sz(J)
n (kdlj)

jn(kdlj)
D

but in the first n 2 k steps the computation needs to be
carried out only for k 1 1 quantities.

(c) Calculate Cen
mn. With the use of the n 2 ueu 1 1P2m

n (cos ulj) exp(2imflj) Sr # dlj

r $ dlj
D. (27)

values of Ceueu
ms obtained in step (b) and the condition
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Ceueu21
ms 5 0, (33) M(J)

mn 5 [iu ifmn(cos u) 2 iftmn(cos u)]z(J)
n (kr) exp(imf),

N(J)
mn 5 ir n(n 1 1)Pm

n (cos u)
z(J)

n (kr)
kr

exp(imf) (36)n 2 ueu values of Ceueu11
mn1n2ueu2122j ( j 5 0, 1, ..., n 2 ueu 2 1)

are found from the recurrence relation (26). Similar to the
process in step (b), the procedure is repeated n 2 ueu times 1 [iutmn(cos u) 1 if ifmn(cos u)]

1
kr

d
druntil Cen

mn is reached and each time the number of scalar
addition coefficients calculated is decreased by one. 3 [rz(J)

n (kr)] exp(imf),
(d) In order to save computing time, the relation

where ir, iu, and if are unit vectors in the spherical polar
coordinate system. Also,Cen

mn 5 (21)m1n1e1n(2n 1 1)(2n 1 1)C2mn
2en (34)

can be used when n . n. fmn(cos u) 5
m

sin u
Pm

n (cos u),

(37)Although this approach does not involve the Gaunt coef-
tmn(cos u) 5

d
du

Pm
n (cos u),ficients, a certain number of auxiliary quantities must be

calculated.
We tested the procedures suggested above for both the

with 0 # n , y and umu # n. The superscript (J) has thedirect and recursive methods numerically. For all the calcu-
same definition as in Eq. (16).lated integer combinations of (m, n, e, n), from degree

In multisphere scattering theory, the electromagneticn 5 n 5 1 to n 5 n 5 30, the numerical values of any
waves scattered by an individual sphere in a cluster needCen

mn obtained by either method are identical (within the
to be transformed into incident waves for other spheresaccuracy allowed by the computer). The direct method is
in the cluster. One needs to describe the same scatteredfaster, however; for instance, the direct method needs 2539
field in alternative forms, each referring to a different coor-CPU seconds while the recursive approach requires 3956
dinate system but with exactly the same common basisCPU seconds for the computation of 921,600 scalar transla-
vector wave functions. The connections between the alter-tional addition coefficients for all the possible combina-
nate representations of the same field are provided by thetions of (m, n, e, n) in a range of degrees from 1 to 30 on
addition theorems, i.e., the expansion of the basis set ofan IBM RS6000-340 workstation.
one representation in terms of the basis set of another. The
vector addition theorem under translation of coordinate

IV. VECTOR TRANSLATIONAL system can be represented by [25]
ADDITION COEFFICIENTS

Addition theorems for the vector spherical wave func- M(J)l
en 5 Oy

n51
On

m52n
[Aen

mnM(1)j
mn 1 Ben

mnN(1)j
mn ], r # dlj,tions are the extension of the addition theorems for scalar

spherical wave functions in the vector case. This section
discusses the analytical expressions for the vector transla- N(J)l

en 5 Oy
n51

On
m52n

[Ben
mnM(1)j

mn 1 Aen
mnN(1)j

mn ], r # dlj,

(38)

tional addition coefficients.

M(J)l
en 5 Oy

n51
On

m52n
[Aen

mnM(J)j
mn 1 Ben

mnN(J)j
mn ], r $ dlj,A. Vector Addition Theorems and the Vector

Translational Coefficients

N(J)l
en 5 Oy

n51
On

m52n
[Ben

mnM(J)j
mn 1 Aen

mnN(J)j
mn ], r $ dlj,

(39)

Time-harmonic electric and magnetic fields E and H
in a sourceless, isotropic, and homogeneous medium are
divergence-free and must satisfy the vector wave equations

where M(J)l
en and N(J)l

en are the basis vector spherical wave
functions about the origin O in the lth coordinate system

= 3 = 3 E 2 k2E 5 0, = 3 = 3 H 2 k2H 5 0. (35)
while M(J)j

mn and N(J)j
mn are about the origin O9 in the jth

coordinate system; Aen
mn and Ben

mn are the so-called vector
translational addition coefficients from the lth to the jthThe linear independent vector field solutions of the vector

wave equations are the vector spherical functions M and coordinate system. These coefficients depend on the rela-
tive separation and direction of the displaced origin O9N that, in spherical polar coordinates (r, u, f), may be

written in the specific component form, with respect to O.
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B. Analytical Expressions for the Vector Stein and Mackowski expressed the vector translational
addition coefficients in terms of seven and six scalar transla-Translational Addition Coefficients
tional addition coefficients, respectively. It is worth noting

Three sets of formulations for the vector translational
here that unlike Stein’s formulae, the geometrical positions

addition coefficients exist in the literature, given by Stein,
of the spheres do not explicitly appear in Mackowski’s

Cruzan, and Mackowski, respectively. As it will soon be-
equations. This makes Mackowski’s formulation more con-

come apparent, a careful examination and comparison of
venient in practical computations. In fact, as Mackowski

these formulations, and a rederivation of Cruzan’s expres-
[21] pointed out, these two formulations can be converted

sions are necessary.
to each other by the use of the equations,

1. STEIN’S AND MACKOWSKI’S FORMULATIONS. Both
Stein and Mackowski expressed the vector translational
addition coefficients in terms of scalar translational addi- Ce11n

m11n 5
ZCen

mn11 1 (n 1 m 1 2)jCen
m11n11

2n 1 3tion coefficients. Stein’s expressions are as follows:

1
ZCen

mn21 2 (n 2 m 2 1)jCen
m11n21

2n 2 1
1 Cen

mn, (45)Aen
mn 5 Cen

mn 1 kdlj cos ulj

3 F n 2 m
n(2n 2 1)

Cen
mn21 1

n 1 m 1 1
(2n 1 3)(n 1 1)

Cen
mm11G Ce21n

m21n 5
1

(n 2 e 1 1)(n 1 e)

1
kdlj

2
sin ulj HF 1

n(2n 2 1)
Cen

m21n21 Hn 1 m
2n 1 3

[(n 1 m 1 1)ZCen
mn11 2 hCen

m21n11]

2
1

(2n 1 3)(n 1 1)
Cen

m21n11G exp(2iflj) 1
n 2 m 1 1

2n 2 1
[(n 2 m)ZCen

m21n 1 hCen
m21n21]

2 F(n 2 m 2 1)(n 2 m)
n(2n 2 1)

Cen
m11n21 1 (n 1 m)(n 2 m 1 1)Cen

mnJ, (46)

2
(n 1 m 1 2)(n 1 m 1 1)

(2n 1 3)(n 1 1)
Cen

m11n11G exp(iflj)J, Cen
mn 5

1
2(m 2 e)

(40) FhCen
m21n11 1 (n 1 m 1 1)(n 1 m 1 2)Cen

m11n11

2n 1 3Ben
mn 5

ikdlj

2n(n 1 1)
h2mCen

mn cos ulj

2 [Cen
m21n21 exp(2iflj) 1 (n 1 m 1 1)(n 2 m) 1

hCen
m21n21 1 (n 2 m)(n 2 m 2 1)Cen

m11n21

2n 2 1 G, (47)

3 Cen
m11n21 exp(iflj)] sin uljj. (41)

where (X, Y, Z) are the Cartesian coordinates of the originMackowski’s equations are
of the jth coordinate system in the lth coordinate system
and

Aen
mn 5

(n 2 m)(n 1 m 1 1)Ce11n
m11n 1 2emCen

mn

1 (n 1 e)(n 2 e 1 1)Ce21n
m21n

2n(n 1 1)
, (42)

j 5 X 1 iY, h 5 X 2 iY. (48)

Ben
mn 5 2

i(2n 1 1)
2n(n 1 1)(2n 2 1)

[(n 2 m)(n 2 m 2 1)Ce11n
m11n21 2. CRUZAN’S FORMULATION. Cruzan expressed the

vector translational coefficients in terms of the Wigner
1 2e(n 2 m)Cen

mn21 2 (n 1 e)(n 2 e 1 1)Ce21n
m21n21], 3jm symbols:

(43)

or alternatively, Aen
mn 5 (21)min2n 2n 1 1

2n(n 1 1) On1n

p5un2n u

Ben
mn 5

i(2n 1 1)
2n(n 1 1)(2n 1 3)

[(n 1 m 1 1)(n 1 m 1 2)Ce11n
m11n11 i p[n(n 1 1) 1 n(n 1 1) 2 p(p 1 1)]

2 2e(n 1 m 1 1)Cen
mn11

3 a(2m, n, e, n, p)Sz(J)
p (kdlj)

jp(kdlj)
D

2 (n 1 e)(n 2 e 1 1)Ce21n
m21n11]. (44)
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S j1 j2 j3

m1 m2 m3
D5 (21) j11j21j3S j1 j2 j3

2m1 2m2 2m3
D,3 Pe2m

p (cos ulj) exp[i(e 2 m)flj] Sr # dlj

r $ dlj
D, (49)

(54)
Ben

mn 5 (21)m11in2n 2n 1 1
2n(n 1 1) On1n

p5un2n u which implies that

i p[p2 2 (n 2 n)2]1/2[(n 1 n 1 1)2 2 p2]1/2

Sj1 j2 j3

0 0 0
D; 0, (55)

3 b(2m, n, e, n, p, p 2 1)Sz(J)
p (kdlj)

jp(kdlj)
D

if j1 1 j2 1 j3 is an odd integer. In the expression (52),
p 5 n 1 n 2 2q, so that n 1 n 1 p 2 1 is always odd and,3 Pe2m

p (cos ulj) exp[i(e 2 m)flj] Sr # dlj

r $ dlj
D, (50)

as a consequence,

where the Gaunt coefficient a(2m, n, e, n, p) is given by Sn n p 2 1

0 0 0
D; 0, (56)

a(2m, n, e, n, p)

which leads to b(2m, n, e, n, p, p 2 1) ; 0 and Ben
mn ; 0.

5 (21)e2m(2p 1 1) F(n 2 m)!(n 1 e)!(p 1 m 2 e)!
(n 1 m)!(n 2 e)!(p 2 m 1 e)!G1/2

Equation (53) yields the same result. In the right-hand side
of Eq. (53), there are three Gaunt coefficients a(n, n, p 2
1), where p 5 n 1 n, n 1 n 2 2, .... All these three Gaunt
coefficients a(n, n, p 2 1) are identically zero due to the3Sn n p

0 0 0
DS n n p

2m e m 2 e
D, (51)

fact that the Gaunt coefficients a(n, n, p) vanish whenever
p 5 n 1 n 2 1, n 1 n 2 3, ..., as mentioned in Section II.
Again, this leads to Ben

mn ; 0. Obviously, such is not theand
case. The vector translational addition coefficients Ben

mn are
simply not always zero. Cruzan’s expressions for Ben

mn, Eqs.b(2m, n, e, n, p, p 2 1)
(50), (52), and (53), should therefore be avoided.

5 (21)e2m(2p 1 1) F(n 2 m)!(n 1 e)!(p 1 m 2 e)!
(n 1 m)!(n 2 e)!(p 2 m 1 e)!G1/2

C. Rederivation of the Expressions for Vector
Addition Coefficients

We have rederived the analytical expressions for both
3S n n p

2m e m 2 e
DSn n p 2 1

0 0 0
D,

Aen
mn and Ben

mn which are similar to Cruzan’s forms.
Stratton [41] showed that the two independent vector

(52)

solutions of vector wave equations can be written in the
form

or

M(J)
mn 5 =u(J)

mn 3 r,
(57)[p2 2 (n 2 n)2]1/2[(n 1 n 1 1)2 2 p2]1/2b(2m, n, e, n, p, p 2 1)

N(J)
mn 5

1
k

=u(J)
mn 3 M(J)

mn,
5

2p 2 1
2p 1 1

[(n 1 m)(n 2 m 1 1)a(m 2 1, n, e, n, p 2 1)

where r is the position vector. In the following derivations,2 (p 2 m 2 e)(p 2 m 2 e 2 1)a(m 1 1, n, e, n, p 2 1)
we will suppress the superscripts of M, N, and u for brevity.

2 2m(p 2 m 2 e)a(m, n, e, n, p 2 1)]. (53) For a point in space, the position vector in the lth coordi-
nate system, rl, is related to the position vector in the jth
coordinate system, rj, byExamining these expressions, we see that only one equiva-

lent scalar translational addition coefficient appears in each
rl 5 rj 1 rlj, (58)expression. This greatly reduces the computing time re-

quirement, compared to Stein’s or Mackowski’s formula-
tion. However, Cruzan’s expression for Ben

mn is misleading. where rlj extends from the origin of the lth coordinate
system to the origin of the jth coordinate system. SinceThe Wigner 3jm symbol has a symmetry property [35, 36]
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the gradient of a scalar quantity is invariant to a transfor- iz · Mmn 5 2imumn, (66)
mation of the coordinate system, we conclude from the
scalar addition theorem (17), the first equation in (57), and and
Eq. (58) that

(ix 1 i iy) · Nmn 5 (2n 1 1)21[num11n11 2 (n 1 1)um11n21],
(67)Men(rl, ul, fl) 5 Oy

n50
On

m52n (ix 2 i iy) · Nmn

5 (2n 1 1)21[n(n 2 m 1 1)(n 2 m 1 2)um21n11Cen
mn[Mmn(rj, uj, fj) 1 =umn(rj, uj, fj) 3 rlj]. (59)

2 (n 1 1)(n 1 m)(n 1 m 2 1)um21n21], (68)

Stein showed that iz · Nmn 5 (2n 1 1)21[n(n 2 m 1 1)umn11

(69)1 (n 1 1)(n 1 m)umn21].
=umn(rj, uj, fj) 3 rlj

Also, four three-term recurrence relations can be obtained
[26] from the definition of the Gaunt coefficient, the prod-5

kdlj

2n 1 1 Hcos ulj Fn 1 m
n

Mmn21 1
n 2 m 1 1

n 1 1
Mmn11G

uct derivative

1
sin ulj exp(2iflj)

2 F2
1
n

Mm11n21 1
1

n 1 1
Mm11n11G d

du
(Pm

n Pe
n) 5 Pm

n
dPe

n

du
1 Pn

e

dPm
n

du
(70)

1
sin ulj exp(iflj)

2 F(n 1 m)(n 1 m 2 1)
n

Mm21n21
and the derivative relations for the associated Legendre
functions

2
(n 2 m 1 1)(n 2 m 1 2)

n 1 1
Mm21n11GJ

dPm
n

du
5

m cos u

sin u
Pm

n 2 Pm11
n ,

(71)1
kdlj

n(n 1 1) Hm cos ulj Nmn 2
sin ulj

2 dPm
n

du
5 2

m cos u

sin u
Pm

n 1 (n 1 m)(n 2 m 1 1)Pm11
n ,

3 [exp(2iflj)Nm11n

namely,1 exp(iflj)(n 1 m)(n 2 m 1 1)Nm21n]J, (60)

a(m, n, e, n, p) 5 a(m 1 1, n, e, n, p)
(72)

where M and N are the abbreviations of M(rj, uj, fj) and
1 a(m, n, e 1 1, n, p),N(rj, uj, fj), respectively. From this Stein obtained the final

expressions for the vector translational coefficients shown (p 2 m 2 e 1 1)(p 1 m 1 e)a(m, n, e, n, p)
in Eqs. (40) and (41). His results can be simplified further. 5 (n 1 e)(n 2 e 1 1)a(m, n, e 2 1, n, p)
By taking the gradient of umn, resolving it into Cartesian 1 (n 1 m)(n 2 m 1 1)a(m 2 1, n, e, n, p), (73)
components, and utilizing the recurrence relations for Bes-

[(p 1 m 1 e)(p 2 m 2 e 1 1) 1 (n 2 e)(n 1 e 1 1)sel and Legendre functions, Mackowski has obtained the
2 (n 1 m)(n 2 m 1 1)] a(m, n, e, n, p)following three relations:

5 (n 1 e)(n 2 e 1 1)a(m, n, e 2 1, n, p) 1 (p 2 m 2 e)
3 (p 1 m 1 e 1 1)a(m, n, e 1 1, n, p), (74)(ix 1 i iy) · =umn 5 (2n 1 1)21(um11n21 1 um11n11), (61)

[(p 1 m 1 e)(p 2 m 2 e 1 1) 1 (n 2 m)(n 1 m 1 1)(ix 2 i iy) · =umn 5 (2n 1 1)21[(n 1 m)(n 1 m 2 1)um21n21
2 (n 1 e)(n 2 e 1 1)] a(m, n, e, n, p)1 (n 2 m 1 1)(n 2 m 1 2)um21n11], (62)

5 (n 1 m)(n 2 m 1 1)a(m 2 1, n, e, n, p) 1 (p 2 m 2 e)
iz · =umn 5 (2n 1 1)21[(n 1 m)um21n21

(63)
3 (p 1 m 1 e 1 1)a(m 1 1, n, e, n, p). (75)

2 (n 2 m 1 1)um21n11].

By the use of Eqs. (60)–(69) and (72)–(75) it can be
Additional relations for the vector spherical harmonics are shown that

(ix 1 i iy) · Mmn 5 ium11n, (64)
Aen

mn 5 (21)m1na0
2n 1 1

2n(n 1 1)
exp[i(e 2 m)flj] Oqmax

q50
(21)qã1q

(ix 2 i iy) · Mmn 5 i(n 1 m)(n 2 m 1 1)um21n, (65)
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the scalar translational addition coefficients. Thus, the eval-
uation of the vector translational addition coefficients by

3 [n(n 1 1) 1 n(n 1 1) 2 p(p 1 1)]Sz(J)
p (kdlj)

jp(kdlj)
D the use of Stein’s or Mackowski’s formulation is based on

the evaluation of the relevant scalar addition coefficients,
which can be accomplished by either the method of direct

3 Pe2m
p (cos ulj) Sr # dlj

r $ dlj
D, calculation or the recursive approach described in Section(76)

III. However, the evaluation of these coefficients by the
use of the expressions of Cruzan’s type can be carried out
only by the method of direct calculation because both theBen

mn 5 (21)m1nia0b0
2n 1 1

2n(n 1 1)
exp[i(e 2 m)flj] OQmax

q50
(21)q

expressions for Aen
mn and Ben

mn are not directly related to the
scalar addition coefficients due to some ‘‘additional’’ fac-

3 h2(n 1 1)(n 2 e)ã2q tors, like [n(n 1 1) 1 n(n 1 1) 2 p(p 1 1)] in the expression
for Aen

mn , under the summation sign. This type of formula-
2 [p(p 1 3) 2 n(n 1 1) 2 n(n 1 3) 2 2e(n 1 1)]ã3qj

tion takes a summation over q for a range from 0 to qmax

concerning qmax 1 1 Gaunt coefficients that need direct
3Sz(J)

p11(kdlj)

jp11(kdlj)
D Pe2m

p11 (cos ulj) Sr # dlj

r $ dlj
D, evaluations.(77)

In the practical application for solving multisphere scat-
tering problems, the expressions for vector addition coef-

where ficients (40)–(44) and (76)–(77) need to introduce a com-
mon factor

a0 5 a(2m, n, e, n, n 1 n)

E en
mn 5 i n2n (2n 1 1)(n 1 m)!(n 2 e)!

(2n 1 1)(n 2 m)!(n 1 e)!
, (81)5

(n 1 1)n(n 1 1)n(n 1 n 1 m 2 e)!
(n 1 n 1 1)n1n(n 1 m)!(n 2 e)!

, (78)

the discussion of which can be found in Xu [23]. In all ofb0 5
(2n 1 1)(n 1 n 1 m 2 e 1 1)

(2n 1 2n 1 1)(n 1 m 1 1)
,

the following calculations, therefore, we replace Aen
mn and

Ben
mn by E en

mn Aen
mn and E en

mnBen
mn , respectively. For example,p 5 n 1 n 2 2q ,

Eqs. (76) and (77) are modified as

qmax 5 min Sn, n,
n 1 n 2 um 2 eu

2 D , (79)
Aen

mn 5

Qmax 5 min Sn 1 1, n,
n 1 n 1 1 2 um 2 eu

2 D , (21)min1n(n 1 2)n21(n 1 2)n11(n 1 n 1 m 2 e)!
4n(n 1 n 1 1)n1n(n 2 m)!(n 1 e)!

and ã1q , ã2q , ã3q , are the normalized Gaunt coefficients 3 exp[i(e 2 m)fl j ] Oqmax

q50
(21)q[n(n 1 1) 1 n(n 1 1)

defined by

ã1q 5 a(2m, n, e, n, n 1 n 2 2q)/a(2m, n, e, n, n 1 n),
2 p(p 1 1)]ã1qSz(J)

p (kdlj )

jp (kdlj )
D P e2m

p (cos ulj) Sr # dlj

r $ dlj
D ,

ã2q 5 a(2m 2 1, n 1 1, e 1 1, n, n 1 n 1 1 2 2q) /
a(2m2 1, n 1 1, e 1 1, n, n 1 n 1 1), (82)

ã3q 5 a(2m, n 1 1, e, n, n 1 n 1 1 2 2q) / Ben
mn 5

a(2m, n 1 1, e, n, n 1 n 1 1).

(80)

(21)min1n11(n 1 2)n11(n 1 2)n11(n 1 n 1 m 2 e 1 1)!
4n(n 1 1)(n 1 m 1 1)(n 1 n 1 2)n1n11(n 2 m)!(n 1 e)!Equation (76) is exactly the same as Eq. (49), but Eq. (77)

must replace Eq. (50) that is Cruzan’s defective expression
for Ben

mn . 3 exp[i(e 2 m)fl j ] OQmax

q50
(21)qh2(n 1 1)(n 2 e)ã2q

V. EVALUATION OF THE VECTOR
2 [p(p 1 3) 2 n(n 1 1) 2 n(n 1 3) 2 2e(n 1 1)]ã3qj

TRANSLATIONAL ADDITION COEFFICIENTS

As discussed above, both Stein and Mackowski express 3Sz(J)
p11 (kdlj )

jp11(kd
lj
)D P e2m

p11 (cos ulj) Sr # dlj

r $ dlj
D ,

the vector translational addition coefficients in terms of
(83)
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or alternatively, (dlj, ul j, fl j) in both Eqs. (76) and (77) refers to Stein’s. The subscript in the heading indicates
whether the method of direct calculation (X) or the re-can be replaced by (djl, uj l, fj l) with in1n in Eq. (76) and

in1n11 in Eq. (77) replaced by (2i)n1n and (2i)n1n11, respec- cursive approach (M) is used to calculate the scalar transla-
tional addition coefficients. In all the test computations fortively.
which results are shown in Tables I, II, and III, the origin

A. Timing Tests of the second coordinate system has the spherical coordi-
nates of (2.0, 0.5, 0.5) in the first coordinate system, whereWe carried out extensive timing tests on an IBM RS6000-
the separation is expressed by a dimensionless quantity340 Workstation. The three sets of expressions for the
kd 5 2fd/l and the two angular coordinates are in unitsvector translational coefficients and the two methods
of radian. Table I shows that the computing time require-for calculating the scalar translational coefficients can be
ment by the first scheme is a fraction of all the others.combined into five schemes to evaluate the vector transla-

tional coefficients. Table I shows a comparison of the B. Numerical Results
required computing times (in seconds) by each of the five

The actual computations show that the numerical resultspossible schemes. In all the test calculations, we used the
obtained from all five schemes mentioned in the aboveHankel function of the first kind, h(1)

n , for z(J)
n . In Table I,

subsection are usually consistent. Table II lists some exam-the first column shows the highest degree nmax(nmax)
ples for the numerical values of Aen

mn and Ben
mn . For thosereached in the computation; the second column, N 5 [nmax

and other similar groups of (m, n, e, n) listed in Table II,(nmax 1 2)]2, is the total number of vector translational
all five schemes provide nearly identical numerical resultscoefficients computed, which is the number of all the possi-
(agreeing exactly up to at least 10 digits in double precisionble combinations for the integer group (m, n, e, n) from
calculations) but it is noteworthy that for all the numericalthe lowest degree n 5 n 5 1 to the highest degree nmax 5
values shown in Table II, the magnitudes of Aen

mn andnmax; each of the next five columns indicates the CPU time
Ben

mn and the magnitudes of the real and imaginary partsspent by the corresponding scheme. The heading of each
of Aen

mn and Ben
mn are not significantly different. There is aof these five columns indicates what scheme is used. CX

particular case (m 5 2e and n 5 n) for which the differencestands for the Cruzan-type formulation that is rederived
between the magnitudes of Aen

mn and of Ben
mn , as well asin this paper, M refers to Mackowski’s formulation, and S

between their real and imaginary parts, becomes large, on
the level of greater than 1010. In these particular cases,
discrepancies in the numerical values obtained by differentTABLE I
schemes for the quantities of smaller magnitudes are obvi-

Timing Test for the Calculation of Vector
ous. Some examples are given in Table III. These discrep-Translational Addition Coefficients
ancies are due to roundoff errors only and are not due to
errors in the formulations. The three sets of expressionsCPU (in seconds) on IBM RS6000-

340 Workstation we discussed can be readily converted to each other. These
discrepancies are probably unavoidable and may indicate

nmax , nmax Ncof. CXa Mx
b MM

c SX
d SM

e

latent numerical problems with large size parameters of
the spheres.5 1225 1 3 4 4 6

10 14400 22 67 86 97 123
15 65025 157 461 628 689 906 VI. EXAMPLES OF PRACTICAL APPLICATIONS
20 193600 685 1940 2755 3012 3994
30 921600 5656 15885 24004 25341 35350 The formulation described in this paper has been used

in practical multisphere scattering calculations. Some nu-a The scheme used the revised version of Cruzan’s expressions for vector
merical results in the practical application are presentedtranslational addition coefficients and Xu’s algorithm for calculating the

Gaunt coefficients. for illustration. We compared the theoretical predictions
b The scheme used Mackowski’s expressions for vector translational addition by the multisphere scattering theory [23] based on the

coefficients and Xu’s method of direct calculation for scalar translational addi- technique for calculation of the addition coefficients de-
tion coefficients.

scribed in this paper with the laboratory scattering mea-c The scheme used Mackowski’s expressions for vector translational addition
surements obtained by Wang [42] through a microwavecoefficients and Mackowski’s recursive approach to calculating scalar transla-

tional addition coefficients. analog technique. The practical examples shown here are
d The scheme used Stein’s expressions for vector translational addition co- the angular distributions of the polarization components

efficients and Xu’s method of direct calculation for scalar translational addi- of scattering intensities i11 and i22 at a fixed orientation for
tion coefficients.

six chains of spheres, each consisting of 2, 3, or 5 identicale The scheme used Stein’s expressions for vector translational addition co-
spheres in various intersphere separations. These quanti-efficients and Mackowski’s recursive approach to calculating scalar transla-

tional coefficients. ties correspond to the scattered field components, perpen-
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TABLE II

Examples for Numerical Values of Aen
mn and Ben

mn

Aen
mn Ben

mn

m n e n Real Imag. Real Imag.

1 2 1 2 .40952764E 1 00 2.37687246E 2 01 2.95439506E 1 00 .14571311E 1 00
1 5 2 6 .42246528E 1 06 .23079387E 1 06 .24466070E 1 05 2.44784830E 1 05

22 10 7 15 .13425435E 1 14 .62258200E 1 14 .20835862E 1 13 2.44930709E 1 12
10 20 3 22 .12643610E 1 58 .33753591E 1 58 .18943589E 1 57 2.70959965E 1 56

228 30 29 32 2.13928339E 2 10 .60669708E 2 10 2.31805959E 2 13 2.73019004E 2 14
22 40 239 45 .34997554E 1 216 .45574651E 1 216 2.23949371E 1 214 .18391132E 1 214

5 50 222 61 .89567769E 1 226 2.12101307E 1 227 .50442227E 1 224 .37334790E 1 224

dicular (i11) or parallel (i22) to the scattering plane that is that are essential to the electromagnetic multisphere-
scattering theory and tested the numerical results obtaineddefined by the x-z-plane. For all cases, the incident plane
by different formulations. The combination of the revisedwave vector is along the z-axis and the spheres are aligned
expressions (82) and (83) with the direct method for calcu-along the x-axis indicated by (h) in the figures. The physical
lating the Gaunt coefficients is the most efficient way toand geometrical parameters of the chains of spheres are
calculate the vector translational coefficients. In actuallisted in Table IV. Figure 1 shows the comparison of our
multisphere scattering calculations, this new formulationtheoretical calculations with the corresponding experimen-
can be combined with the rotate-translation-rotate schemetal data for these chains of spheres.
introduced by Mackowski [21] to reduce the actual comput-
ing time even further. There is a special case of two spheresVII. CLOSING REMARKS
restricted to lie along a common z-axis, which has been
thoroughly studied by Bruning [32]. This specializationWe have discussed the formulations and computational

methods for the vector translational addition coefficients results in a great simplification of the addition theorem.

TABLE III

Examples for Numerical Values of Aen
mn and Ben

mn when m 5 2e and n 5 n

kd 5 2.0 Aen
mn Ben

mn
u 5 f 5 0.5 rad

Real Imag. Real Imag.

m 5 e 5 0 CX .29696820E 1 00 2.19286014E 1 18 2.16872592E 1 02 2.38363062E 2 10
n 5 n 5 10 MX .29696820E 1 00 2.19286014E 1 18 2.62850909E 1 03 .28794983E 2 01

MM .29696820E 1 00 2.19286014E 1 18 .49311307E 1 06 .14109514E 2 09
SX 2.21531319E 1 01 2.19286014E 1 18 2.21463273E 1 04 2.17827818E 1 00
SM .20093328E 1 02 2.19286014E 1 18 .27198735E 1 03 2.11795571E 2 15

m 5 2e 5 25 CX 2.40406257E 1 34 2.11952693E 1 34 .14369891E 1 17 2.48577633E 1 17
n 5 n 5 20 MX 2.40406257E 1 34 2.11952693E 1 34 .37730561E 1 22 2.12769437E 1 23

MM 2.40406257E 1 34 2.11952693E 1 34 .11790800E 1 20 .23581601E 1 20
SX 2.40406257E 1 34 2.11952693E 1 34 2.22703132E 1 19 .76804213E 1 19
SM 2.40406257E 1 34 2.11952693E 1 34 .30190335E 1 17 .24152268E 1 20

m 5 2e 5 10 CX .18077051E 1 110 .27881159E 1 110 2.13181202E 1 94 .855461747E 1 93
n 5 n 5 30 MX .18077051E 1 110 .27881159E 1 110 2.23907708E 1 98 .15540010E 1 98

MM .18077051E 1 110 .27881159E 1 110 .47815415E 1 96 .11953854E 1 96
SX .18077051E 1 110 .27881159E 1 110 .94172768E 1 97 2.61060187E 1 97
SM .18077051E 1 110 .27881159E 1 110 .72319284E 1 97 2.46898304E 1 97

m 5 2e 5 235 CX 2.65142622E 2 05 .13748543E 2 04 .20997296E 2 24 .99488279E 2 25
n 5 n 5 40 MX 2.65142622E 2 05 .13748543E 2 04 2.77260453E 2 17 2.38630226E 2 17

MM 2.65142622E 2 05 .13748543E 2 04 .0000000E 1 18 2.13320768E 2 18
SX 2.65142622E 2 05 .13748543E 2 04 .26119667E 2 18 .12373351E 2 18
SM 2.65142622E 2 05 .13748543E 2 04 .39989284E 2 21 .33324403E 2 22
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TABLE IV

The Sphere-System Parameters

No. of spheres Single sphere size Complex refractive index Dimensionlessa separation
ID No. in the chain parameter x m9-im0 parameter kd

1 2 3.083 1.61 2 i0.004 6.166
2 2 3.083 1.61 2 i0.004 8.031
3 2 4.346 1.63 2 i0.010 9.941
4 2 4.346 1.63 2 i0.010 10.763
5 3 3.083 1.61 2 i0.004 7.525
6 5 2.176 1.629 2 i.0125 4.352

a d is the center to center separation distance between two neighboring spheres.

In this case, the addition theorem becomes orthogonal in nates. The rotational transformation for scalar and vector
spherical harmonics is identical and is much simpler thanorder m, that is, Aen

mn 5 Ben
mn ; 0 whenever m ? e. In

general, the spheres in a cluster will not be aligned along the translational transformation.
We see from the numerical examples (Tables II and III)the z-axis. However, one can take advantage of this great

reduction of computing time through a rotation of coordi- that there is a huge difference in the magnitudes of the

FIG. 1. Angular distributions of six chains of spheres when the axes of symmetry of the chains are aligned along the x-axis (the incident plane
wave vector is along the z-axis and the scattering plane is the x-z-plane). The parameters of these sphere chains are listed in Table IV. The number
labeled at the upper right corner of each figure is the identification number of the sphere chain involved. A dotted curve in each figure is the
theoretical prediction for i11 and the continuous curve for i22 . The open circles in each figure are the laboratory scattering measurements for
i11 and the filled circles for i22 .
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